WANTT
WANTT is LOGICAL
WANTT = .true. if the triangular Schur factor
is being computed. WANTT is set to .false. otherwise.
WANTZ
WANTZ is LOGICAL
WANTZ = .true. if the unitary Schur factor is being
computed. WANTZ is set to .false. otherwise.
KACC22
KACC22 is INTEGER with value 0, 1, or 2.
Specifies the computation mode of far-from-diagonal
orthogonal updates.
= 0: ZLAQR5 does not accumulate reflections and does not
use matrix-matrix multiply to update far-from-diagonal
matrix entries.
= 1: ZLAQR5 accumulates reflections and uses matrix-matrix
multiply to update the far-from-diagonal matrix entries.
= 2: Same as KACC22 = 1. This option used to enable exploiting
the 2-by-2 structure during matrix multiplications, but
this is no longer supported.
N
N is INTEGER
N is the order of the Hessenberg matrix H upon which this
subroutine operates.
KTOP
KTOP is INTEGER
KBOT
KBOT is INTEGER
These are the first and last rows and columns of an
isolated diagonal block upon which the QR sweep is to be
applied. It is assumed without a check that
either KTOP = 1 or H(KTOP,KTOP-1) = 0
and
either KBOT = N or H(KBOT+1,KBOT) = 0.
NSHFTS
NSHFTS is INTEGER
NSHFTS gives the number of simultaneous shifts. NSHFTS
must be positive and even.
S
S is COMPLEX*16 array, dimension (NSHFTS)
S contains the shifts of origin that define the multi-
shift QR sweep. On output S may be reordered.
H
H is COMPLEX*16 array, dimension (LDH,N)
On input H contains a Hessenberg matrix. On output a
multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
to the isolated diagonal block in rows and columns KTOP
through KBOT.
LDH
LDH is INTEGER
LDH is the leading dimension of H just as declared in the
calling procedure. LDH >= MAX(1,N).
ILOZ
ILOZ is INTEGER
IHIZ
IHIZ is INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
Z
Z is COMPLEX*16 array, dimension (LDZ,IHIZ)
If WANTZ = .TRUE., then the QR Sweep unitary
similarity transformation is accumulated into
Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
If WANTZ = .FALSE., then Z is unreferenced.
LDZ
LDZ is INTEGER
LDA is the leading dimension of Z just as declared in
the calling procedure. LDZ >= N.
V
V is COMPLEX*16 array, dimension (LDV,NSHFTS/2)
LDV
LDV is INTEGER
LDV is the leading dimension of V as declared in the
calling procedure. LDV >= 3.
U
U is COMPLEX*16 array, dimension (LDU,2*NSHFTS)
LDU
LDU is INTEGER
LDU is the leading dimension of U just as declared in the
in the calling subroutine. LDU >= 2*NSHFTS.
NV
NV is INTEGER
NV is the number of rows in WV agailable for workspace.
NV >= 1.
WV
WV is COMPLEX*16 array, dimension (LDWV,2*NSHFTS)
LDWV
LDWV is INTEGER
LDWV is the leading dimension of WV as declared in the
in the calling subroutine. LDWV >= NV.
NH
NH is INTEGER
NH is the number of columns in array WH available for
workspace. NH >= 1.
WH
WH is COMPLEX*16 array, dimension (LDWH,NH)
LDWH
LDWH is INTEGER
Leading dimension of WH just as declared in the
calling procedure. LDWH >= 2*NSHFTS.
Karen Braman and Ralph Byers, Department of Mathematics,
University of Kansas, USA
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 Performance,
SIAM Journal of Matrix Analysis, volume 23, pages 929--947, 2002.
Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed
chains of bulges in multishift QR algorithms. ACM Trans. Math. Softw. 40, 2,
Article 12 (February 2014).