GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
zlar1v.f(3) LAPACK zlar1v.f(3)

zlar1v.f -


subroutine zlar1v (N, B1, BN, LAMBDA, D, L, LD, LLD, PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA, R, ISUPPZ, NRMINV, RESID, RQCORR, WORK)
 
ZLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.

ZLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.
Purpose:
 ZLAR1V computes the (scaled) r-th column of the inverse of
 the sumbmatrix in rows B1 through BN of the tridiagonal matrix
 L D L**T - sigma I. When sigma is close to an eigenvalue, the
 computed vector is an accurate eigenvector. Usually, r corresponds
 to the index where the eigenvector is largest in magnitude.
 The following steps accomplish this computation :
 (a) Stationary qd transform,  L D L**T - sigma I = L(+) D(+) L(+)**T,
 (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
 (c) Computation of the diagonal elements of the inverse of
     L D L**T - sigma I by combining the above transforms, and choosing
     r as the index where the diagonal of the inverse is (one of the)
     largest in magnitude.
 (d) Computation of the (scaled) r-th column of the inverse using the
     twisted factorization obtained by combining the top part of the
     the stationary and the bottom part of the progressive transform.
Parameters:
N
          N is INTEGER
           The order of the matrix L D L**T.
B1
          B1 is INTEGER
           First index of the submatrix of L D L**T.
BN
          BN is INTEGER
           Last index of the submatrix of L D L**T.
LAMBDA
          LAMBDA is DOUBLE PRECISION
           The shift. In order to compute an accurate eigenvector,
           LAMBDA should be a good approximation to an eigenvalue
           of L D L**T.
L
          L is DOUBLE PRECISION array, dimension (N-1)
           The (n-1) subdiagonal elements of the unit bidiagonal matrix
           L, in elements 1 to N-1.
D
          D is DOUBLE PRECISION array, dimension (N)
           The n diagonal elements of the diagonal matrix D.
LD
          LD is DOUBLE PRECISION array, dimension (N-1)
           The n-1 elements L(i)*D(i).
LLD
          LLD is DOUBLE PRECISION array, dimension (N-1)
           The n-1 elements L(i)*L(i)*D(i).
PIVMIN
          PIVMIN is DOUBLE PRECISION
           The minimum pivot in the Sturm sequence.
GAPTOL
          GAPTOL is DOUBLE PRECISION
           Tolerance that indicates when eigenvector entries are negligible
           w.r.t. their contribution to the residual.
Z
          Z is COMPLEX*16 array, dimension (N)
           On input, all entries of Z must be set to 0.
           On output, Z contains the (scaled) r-th column of the
           inverse. The scaling is such that Z(R) equals 1.
WANTNC
          WANTNC is LOGICAL
           Specifies whether NEGCNT has to be computed.
NEGCNT
          NEGCNT is INTEGER
           If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
           in the  matrix factorization L D L**T, and NEGCNT = -1 otherwise.
ZTZ
          ZTZ is DOUBLE PRECISION
           The square of the 2-norm of Z.
MINGMA
          MINGMA is DOUBLE PRECISION
           The reciprocal of the largest (in magnitude) diagonal
           element of the inverse of L D L**T - sigma I.
R
          R is INTEGER
           The twist index for the twisted factorization used to
           compute Z.
           On input, 0 <= R <= N. If R is input as 0, R is set to
           the index where (L D L**T - sigma I)^{-1} is largest
           in magnitude. If 1 <= R <= N, R is unchanged.
           On output, R contains the twist index used to compute Z.
           Ideally, R designates the position of the maximum entry in the
           eigenvector.
ISUPPZ
          ISUPPZ is INTEGER array, dimension (2)
           The support of the vector in Z, i.e., the vector Z is
           nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
NRMINV
          NRMINV is DOUBLE PRECISION
           NRMINV = 1/SQRT( ZTZ )
RESID
          RESID is DOUBLE PRECISION
           The residual of the FP vector.
           RESID = ABS( MINGMA )/SQRT( ZTZ )
RQCORR
          RQCORR is DOUBLE PRECISION
           The Rayleigh Quotient correction to LAMBDA.
           RQCORR = MINGMA*TMP
WORK
          WORK is DOUBLE PRECISION array, dimension (4*N)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Contributors:
Beresford Parlett, University of California, Berkeley, USA
 

Jim Demmel, University of California, Berkeley, USA
 

Inderjit Dhillon, University of Texas, Austin, USA
 

Osni Marques, LBNL/NERSC, USA
 

Christof Voemel, University of California, Berkeley, USA
Definition at line 229 of file zlar1v.f.

Generated automatically by Doxygen for LAPACK from the source code.
Sat Nov 16 2013 Version 3.4.2

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.