GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
zlasr.f(3) LAPACK zlasr.f(3)

zlasr.f -


subroutine zlasr (SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA)
 
ZLASR applies a sequence of plane rotations to a general rectangular matrix.

ZLASR applies a sequence of plane rotations to a general rectangular matrix.
Purpose:
 ZLASR applies a sequence of real plane rotations to a complex matrix
 A, from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', and P**T is the transpose of P. When DIRECT = 'F' (Forward sequence), then P = P(z-1) * ... * P(2) * P(1) and when DIRECT = 'B' (Backward sequence), then P = P(1) * P(2) * ... * P(z-1) where P(k) is a plane rotation matrix defined by the 2-by-2 rotation R(k) = ( c(k) s(k) ) = ( -s(k) c(k) ). When PIVOT = 'V' (Variable pivot), the rotation is performed for the plane (k,k+1), i.e., P(k) has the form P(k) = ( 1 ) ( ... ) ( 1 ) ( c(k) s(k) ) ( -s(k) c(k) ) ( 1 ) ( ... ) ( 1 ) where R(k) appears as a rank-2 modification to the identity matrix in rows and columns k and k+1. When PIVOT = 'T' (Top pivot), the rotation is performed for the plane (1,k+1), so P(k) has the form P(k) = ( c(k) s(k) ) ( 1 ) ( ... ) ( 1 ) ( -s(k) c(k) ) ( 1 ) ( ... ) ( 1 ) where R(k) appears in rows and columns 1 and k+1. Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is performed for the plane (k,z), giving P(k) the form P(k) = ( 1 ) ( ... ) ( 1 ) ( c(k) s(k) ) ( 1 ) ( ... ) ( 1 ) ( -s(k) c(k) ) where R(k) appears in rows and columns k and z. The rotations are performed without ever forming P(k) explicitly.
Parameters:
SIDE
          SIDE is CHARACTER*1
          Specifies whether the plane rotation matrix P is applied to
          A on the left or the right.
          = 'L':  Left, compute A := P*A
          = 'R':  Right, compute A:= A*P**T
PIVOT
          PIVOT is CHARACTER*1
          Specifies the plane for which P(k) is a plane rotation
          matrix.
          = 'V':  Variable pivot, the plane (k,k+1)
          = 'T':  Top pivot, the plane (1,k+1)
          = 'B':  Bottom pivot, the plane (k,z)
DIRECT
          DIRECT is CHARACTER*1
          Specifies whether P is a forward or backward sequence of
          plane rotations.
          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
M
          M is INTEGER
          The number of rows of the matrix A.  If m <= 1, an immediate
          return is effected.
N
          N is INTEGER
          The number of columns of the matrix A.  If n <= 1, an
          immediate return is effected.
C
          C is DOUBLE PRECISION array, dimension
                  (M-1) if SIDE = 'L'
                  (N-1) if SIDE = 'R'
          The cosines c(k) of the plane rotations.
S
          S is DOUBLE PRECISION array, dimension
                  (M-1) if SIDE = 'L'
                  (N-1) if SIDE = 'R'
          The sines s(k) of the plane rotations.  The 2-by-2 plane
          rotation part of the matrix P(k), R(k), has the form
          R(k) = (  c(k)  s(k) )
                 ( -s(k)  c(k) ).
A
          A is COMPLEX*16 array, dimension (LDA,N)
          The M-by-N matrix A.  On exit, A is overwritten by P*A if
          SIDE = 'R' or by A*P**T if SIDE = 'L'.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Definition at line 201 of file zlasr.f.

Generated automatically by Doxygen for LAPACK from the source code.
Sat Nov 16 2013 Version 3.4.2

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.