FACT
FACT is CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AFB contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. AB and AFB will not
be modified.
= 'N': The matrix A will be copied to AFB and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AFB and factored.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
NRHS
NRHS is INTEGER
The number of right-hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first KD+1 rows of the array, except
if FACT = 'F' and EQUED = 'Y', then A must contain the
equilibrated matrix diag(S)*A*diag(S). The j-th column of A
is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
See below for further details.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDAB
LDAB is INTEGER
The leading dimension of the array A. LDAB >= KD+1.
AFB
AFB is COMPLEX*16 array, dimension (LDAFB,N)
If FACT = 'F', then AFB is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**H *U or A = L*L**H of the band matrix
A, in the same storage format as A (see AB). If EQUED = 'Y',
then AFB is the factored form of the equilibrated matrix A.
If FACT = 'N', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**H *U or A = L*L**H.
If FACT = 'E', then AFB is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**H *U or A = L*L**H of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAFB
LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= KD+1.
EQUED
EQUED is CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S
S is DOUBLE PRECISION array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B
B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX*16 array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND
RCOND is DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX*16 array, dimension (2*N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading principal minor of order i of A
is not positive, so the factorization could not
be completed, and the solution has not been
computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.