GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
TESTING/LIN/zpst01.f(3) LAPACK TESTING/LIN/zpst01.f(3)

TESTING/LIN/zpst01.f


subroutine zpst01 (uplo, n, a, lda, afac, ldafac, perm, ldperm, piv, rwork, resid, rank)
ZPST01

ZPST01

Purpose:


ZPST01 reconstructs an Hermitian positive semidefinite matrix A
from its L or U factors and the permutation matrix P and computes
the residual
norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
where EPS is the machine epsilon, L' is the conjugate transpose of L,
and U' is the conjugate transpose of U.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The number of rows and columns of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
The original Hermitian matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N)

AFAC


AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
The factor L or U from the L*L' or U'*U
factorization of A.

LDAFAC


LDAFAC is INTEGER
The leading dimension of the array AFAC. LDAFAC >= max(1,N).

PERM


PERM is COMPLEX*16 array, dimension (LDPERM,N)
Overwritten with the reconstructed matrix, and then with the
difference P*L*L'*P' - A (or P*U'*U*P' - A)

LDPERM


LDPERM is INTEGER
The leading dimension of the array PERM.
LDAPERM >= max(1,N).

PIV


PIV is INTEGER array, dimension (N)
PIV is such that the nonzero entries are
P( PIV( K ), K ) = 1.

RWORK


RWORK is DOUBLE PRECISION array, dimension (N)

RESID


RESID is DOUBLE PRECISION
If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )

RANK


RANK is INTEGER
number of nonzero singular values of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 134 of file zpst01.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:35 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.