
NAMEzsteqr.f SYNOPSISFunctions/Subroutinessubroutine zsteqr (COMPZ, N, D, E, Z, LDZ, WORK, INFO) Function/Subroutine Documentationsubroutine zsteqr (characterCOMPZ, integerN, double precision, dimension( * )D, double precision, dimension( * )E, complex*16, dimension( ldz, * )Z, integerLDZ, double precision, dimension( * )WORK, integerINFO)ZSTEQR Purpose:ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method. The eigenvectors of a full or band complex Hermitian matrix can also be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this matrix to tridiagonal form. COMPZ
Author:
COMPZ is CHARACTER*1 = 'N': Compute eigenvalues only. = 'V': Compute eigenvalues and eigenvectors of the original Hermitian matrix. On entry, Z must contain the unitary matrix used to reduce the original matrix to tridiagonal form. = 'I': Compute eigenvalues and eigenvectors of the tridiagonal matrix. Z is initialized to the identity matrix.N N is INTEGER The order of the matrix. N >= 0.D D is DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, if INFO = 0, the eigenvalues in ascending order.E E is DOUBLE PRECISION array, dimension (N1) On entry, the (n1) subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed.Z Z is COMPLEX*16 array, dimension (LDZ, N) On entry, if COMPZ = 'V', then Z contains the unitary matrix used in the reduction to tridiagonal form. On exit, if INFO = 0, then if COMPZ = 'V', Z contains the orthonormal eigenvectors of the original Hermitian matrix, and if COMPZ = 'I', Z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If COMPZ = 'N', then Z is not referenced.LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if eigenvectors are desired, then LDZ >= max(1,N).WORK WORK is DOUBLE PRECISION array, dimension (max(1,2*N2)) If COMPZ = 'N', then WORK is not referenced.INFO INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: the algorithm has failed to find all the eigenvalues in a total of 30*N iterations; if INFO = i, then i elements of E have not converged to zero; on exit, D and E contain the elements of a symmetric tridiagonal matrix which is unitarily similar to the original matrix. Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Definition at line 133 of file zsteqr.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code.
Visit the GSP FreeBSD Man Page Interface. 