ZUPMTR overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by ZHPTRD using packed
storage:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
SIDE
SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangular packed storage used in previous
call to ZHPTRD;
= 'L': Lower triangular packed storage used in previous
call to ZHPTRD.
TRANS
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER
The number of rows of the matrix C. M >= 0.
N
N is INTEGER
The number of columns of the matrix C. N >= 0.
AP
AP is COMPLEX*16 array, dimension
(M*(M+1)/2) if SIDE = 'L'
(N*(N+1)/2) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by ZHPTRD. AP is modified by the routine but
restored on exit.
TAU
TAU is COMPLEX*16 array, dimension (M-1) if SIDE = 'L'
or (N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ZHPTRD.
C
C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX*16 array, dimension
(N) if SIDE = 'L'
(M) if SIDE = 'R'
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value